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Abstract— This paper addresses the problem of optimally
covering a domain when the scalar function that describes
the relative importance of the points in the domain is initially
unknown. We propose an adaptive strategy for a team of coop-
erative robots that combines estimation and learning methods
with optimal spatial coverage. The proposed algorithm leads the
team of robots to an optimal solution of the coverage problem
by efficiently trading off movement choices for learning the
field with movement choices for covering the estimated field.
The algorithm exploits the flexibility of Gaussian processes for
learning the field and optimization rules based on Voronoi
partitions of the environment for covering the field. We propose
an exploration strategy that uses the decentralized nature of the
coverage problem by allowing each robot to sample the space
in its area of dominance. We provide a theoretical guarantee of
the algorithm. The performance of the proposed algorithm is
evaluated in simulation as well as on a team of mobile robots.

I. INTRODUCTION

The spatial coverage problem refers to how to position
a collection of mobile robots over a domain such that its
environmental features are optimally monitored [1], [2], [3],
[4]. Coverage algorithms offer strategies for individual robots
to distribute themselves over the environment, affording
higher concentrations of robots in more important areas.
This makes the control paradigm attractive for applications
such as search and rescue [5], precision agriculture [6], and
environmental monitoring and exploration [7], [8], [9], [10].

When covering a domain, it is likely that not all the
points require the same attention from the multi-robot team.
Locations with high concentration of resources, prevalence
of environmental features, or increased probability associated
with certain events, require closer attention from the robots.
Variability of the concentration, prevalence or probability
can be encoded as a density function defined over the
domain, as in [1]. Different coverage control approaches
have addressed a variety of scenarios associated with these
density functions, including the homogeneous, static case
[1], [11], heterogeneous densities associated with different
sensing capabilities [12], [13], nonuniform fields [14], and
time-varying densities that represent dynamic objectives [15],
[16]. However, a common assumption is to consider the
density function as known information to each of the robots
tasked with covering the environment.
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In this work, we focus on how coverage should be per-
formed when the density function over the domain is initially
unknown to the multi-robot team. In the proposed algorithm,
each robot explores the domain and sequentially collects
samples of the density function, which are used to adaptively
learn the function even in the unexplored areas. The learning
task is performed simultaneously with the coverage task: we
propose an optimization problem in which the cost function
is a combination of the learning goal and the coverage goal.
As more data is added to the model, the approximation of the
density function becomes more accurate and the learning task
is de-emphasized in favor of the coverage task. The learning
task is performed using a Bayesian approach that leverages
the flexibility of Gaussian processes. The estimation is made
more accurate by having each robot sample the space in its
area of dominance so as to maximize its knowledge of the
area and to preserve the decentralized nature of the problem.
The coverage task is achieved by leveraging the well-known
Lloyd’s algorithm [17]. The proposed method is theoretically
justified by exploiting existing results on regret analysis of
Bayesian optimization problems.

The paper is organized as follows. The rest of this section
includes a summary of related literature on multi-robot
estimation and spatial coverage. Section II formally intro-
duces the spatial coverage problem and the considerations
associated with sampling the density function. In Section
III we describe the probabilistic model used to learn the
density function from the robot samples. The proposed
algorithms are described and justified in Section IV, and their
performance is analyzed in simulation and on real robotic
platforms in Section V. We conclude in Section VI.

A. Related Work

A broad body of work has been dedicated to the problem
of multi-robot optimal coverage, e.g., [1], [18], and the prob-
lem of cooperative exploration and estimation of unknown
fields (often for coordinated control), e.g., [19], [20], [21],
[22], [23]. For a comprehensive review see [24]. However,
the question of how to optimally explore a spatial field to
learn it and optimally cover it remains a problem under
investigation.

Some works optimize only one or the other problem. For
example, in [25], [26] the robots move to optimally cover
the estimated field, which is updated from the measurements
taken along the way. No optimal exploration strategy is
defined. Conversely, in [8], [27], an optimal exploration
strategy is defined to minimize uncertainy in the estimated
field, but no strategy to optimally cover the sampled field
is defined. Other works use a sequential, phased execution
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of both tasks, e.g., [28], [29], [30], [31]. Typically, the first
phase involves an optimal exploration of the domain to esti-
mate the density function. In the second phase, the estimate
is used by the team to optimally cover the environment.

The algorithm proposed in [32] does address the optimal
estimation and optimal coverage tasks simultaneously. How-
ever, the convergence of the algorithm requires the use of an
agent dedicated to sampling points in the domain for learning
while the other agents perform optimal coverage without
focusing on decreasing the uncertainty of the estimation.
In contrast, we propose two sampling strategies that enable
the multi-robot team to optimally learn the spatial field and
optimally cover it.

II. SPATIAL COVERAGE WITH AN UNKNOWN
DENSITY FUNCTION

Coverage control deals with the problem of how to dis-
tribute a team of robots over a domain in order to optimally
monitor its environmental features. Consider a team of N
mobile robots with positions xi ∈ Rn, i ∈ {1, . . . , N},
that are to cover a compact, convex domain, D ∈ Rn. To
distribute the covering responsibilities among the team, a
typical choice is to let each Robot i be in charge of those
points that are closest to it, i.e., in its region of dominance

Vi(x) = {q ∈ D | ‖q − xi‖ ≤ ‖q − xj‖, ∀j 6= i},

where x = [xᵀ1 , . . . , x
ᵀ
N ]

ᵀ ∈ RNn is the stacked position
of the robots. The region of dominance of each robot thus
becomes its Voronoi cell in the domain D with respect to the
Euclidean distance, which can be calculated by each robot
by measuring the relative position of its neighbors and the
environment boundaries.

The prevalence of features of interest may vary across the
domain. The relative importance of the different points in
the domain is typically represented through a spatial field or
density function, φ : D 7→ [0,∞), that encodes the relative
importance of the points in the domain such that, the higher
the value of the density φ(q) at a particular point, the more
attention we want the team to pay to that point. A common
assumption in the coverage literature (e.g., [1], [2], [33]) is
for this density function to be known by the team. With
this information, the quality of coverage of Robot i over its
region of dominance Vi(x) can be encoded as

hi(x, φ) =

∫
Vi(x)

‖q − xi‖2φ(q) dq,

where the square of the Euclidean distance between the
position of the robot and the points within its region of dom-
inance reflects the degradation of the sensing performance
with distance. Summing over all the agents, the performance
of the multi-robot team with respect to φ can then be encoded
through the locational cost [1] as

H(x, φ) =

N∑
i=1

hi(x, φ) =

N∑
i=1

∫
Vi(x)

‖q−xi‖2φ(q) dq, (1)

where the lower the cost, the better the coverage.

A necessary condition for (1) to be minimized is that the
position of each robot corresponds to the center of mass of
its Voronoi cell [33], given by

ci(x) =

∫
Vi(x)

qφ(q) dq∫
Vi(x)

φ(q) dq
. (2)

This spatial configuration, referred to as a centroidal Voronoi
tessellation (CVT), can be achieved by letting the multi-robot
team execute the well-known Lloyd’s algorithm [17]:

ẋi = κ(ci(x)− xi), κ > 0. (3)

However, CVTs are not unique and, thus, (3) only guarantees
convergence to a local minimum of (1). Furthermore, note
that ci(x) only depends on the position of the Delaunay
neighbors of Robot i, i.e., the set of robots whose Voronoi
cells share a face with Robot i’s Voronoi cell.

In this work, however, we assume that the density function
φ is unknown. Robots can take a scalar noisy measurements
of the density function as they move around the domain,

yi = φ(xi) + ε, (4)

where ε ∼ N (0, σ2). The measurement noise ε is indepen-
dent and identically distributed (i.i.d.) across time and space.

For the remainder of the paper, we use the following
notation. T is the total number of time iterations and t ∈
{1, . . . , T} denotes the time iteration. The set of points sam-
pled by all the robots in the domain D at time t is denoted
by x(t) =

[
x

(t)
1

ᵀ
, . . . , x

(t)
N

ᵀ]ᵀ
∈ RNn. The corresponding

noisy measurements are y(t) = [y
(t)
1 , · · · , y(t)

N ]ᵀ ∈ RN . We
let x(1:t) and y(1:t) refer to all the sampled locations and
noisy measurements taken from iteration 1 to t.

At each time t, all the sampled information taken by the
robots from the beginning of the algorithm, {x(1:t),y(1:t)},
can be used to estimate the density function over the domain.
In the next section, we introduce the Gaussian process and
Bayesian inference tools used in this paper.

III. GAUSSIAN PROCESSES FOR FIELD
ESTIMATION

A challenging assumption considered in this work is that
the density function φ(·) in equation (1) is not known
in advance and must be learned online. For this reason,
we assume that robots are equipped with an estimation
mechanism that progressively refines their knowledge of the
density function. In this section, we address the problem of
learning φ(·) from points sampled by the robots. To this
end, we employ Gaussian processes. A Gaussian process
is a generalization of the Gaussian probability distribution,
and it can represent a function explicitly and rigorously by
placing a prior distribution over the space of functions. The
combination of the prior and the data leads to the posterior
distribution over functions.

A Gaussian process is completely specified by a mean
function µ : D → R and covariance function k : D×D → R,
where µ represents the expected value of φ at point x, and
k measures the linear dependence of two variables x and x′



[34]. We assume that the structures of µ and k are known
up to certain hyperparameters ρ and τ as

µ(·, ρ), k = (·, ·, τ).

In particular, in Section VI we use a linear model for the
mean and a squared-exponential kernel for the covariance,

µ(x; ρ) = ρᵀx, k(x, x′; τ) = exp

(
−‖x− x

′‖2

2τ2

)
.

Thus, the unknown density function can be described with
a Gaussian process,

φ(·) ∼ GP (µ(·, ρ), k(·, ·, τ)).

The unknown hyperparameters can be estimated from the
data through maximum likelihood estimation. Once the
hyperparameters are estimated, Bayesian inference is used
to model an estimation of φ. The estimation task in the
algorithm is addressed as follows.

At each time t ∈ {1, . . . , T} the collected samples y(1:t)

are used to perform maximum likelihood estimation of the
hyperparameters as

(ρ(t), τ (t)) = argmax
ρ,τ

p(y(1:t) | x(1:t); ρ, τ). (5)

The function p of equation (5) can be expressed in closed
form with log-likelihood function:

log(p(y(1:t)|x(1:t); ρ, τ)) =

−1

2
(µ(1:t)(ρ)−y(1:t))ᵀ(Kx(1:t)(τ)+σ2I)−1(µ(1:t)(ρ)−y(1:t))

− 1

2
log |Kx(1:t)(τ) + σ2I| − t

2
log(2π),

where µ(1:t)(ρ) ∈ RNt is the vector of mean values at all
points sampled

µ(1:t)(ρ) , [µ(x
(1)
1 ; ρ) · · ·µ(x(t)

n ; ρ)]ᵀ,

I is the identity matrix, and Kx(1:t)(τ) ∈ RNt×Nt is the
covariance matrix with entries k(x

(j)
i , x

(j′)
i′ ; τ) for i, i′ ∈

{1, . . . , N} and j, j′ ∈ {1, . . . , t}. Therefore, the maximum
likelihood estimation of ρ and τ is given by

(ρ(t), τ (t)) = argmin
ρ,τ

{
log |Kx(1:t)(τ) + σ2I|+

(µ(1:t)(ρ)− y(1:t))ᵀ(Kx(1:t)(τ) + σ2I)−1(µ(1:t)(ρ)− y(1:t))
}

(6)

The maximum likelihood solution of the hyperparameters (6)
improves as more samples are added.

Given hyperparameters ρ(t) and τ (t), noisy observations
y(1:t), and sampling locations x(1:t), the posterior distribu-
tion of φ(·) can be modeled as a Gaussian process with mean
µ(t)(x) and covariance k(t)(x, x′), computed as in [27]:

µ(t)(x) = µ(x; ρ(t)) + k(x;x(1:t))ᵀ

(Kx(1:t)(τ (t)) + σ2I)−1(y(1:t) − µ(1:t)(ρ(t))),

k(t)(x, x′) = k(x, x′; τ (t))

− k(x;x(1:t))ᵀ(Kx(1:t)(τ (t)) + σ2I)−1k(x′;x(1:t)),
(7)

where k(x;x(1:t)) ∈ RNt is the vector with entries
k(x

(j)
i , x; τ (t)) for i ∈ {1, . . . , N} and j ∈ {1, . . . , t}. At

each point we can define the standard deviation as

σ(t)(x) =
√
k(t)(x, x). (8)

These computations allow the algorithms in Section IV to
predict the value of φ across the domain.

The described estimation requires a centralized compu-
tation of the mean and variance of the Gaussian process.
Decentralization of the procedure is left for future work.

IV. ALGORITHM
In this section, we present two different algorithms for

the simultaneous estimation and coverage of an initially un-
known density function or spatial field. Both algorithms aim
to balance the spatial coverage of the estimated density with
the decrease in the uncertainty of the estimation. However,
the main difference between the two algorithms, hereafter
referred to as (i) the Lookahead Estimate Coverage (LEC)
algorithm and (ii) the Voronoi Estimate Coverage (VEC)
algorithm, is the exploration strategy, i.e., the sampling
strategy used to reduce the uncertainty of the model.

We start by defining some useful notation. Let φ(t) be
the estimate of the field φ at time t, which we refer to as
the surrogate density function since it will substitute for
the true function in the coverage optimization. We define
{β(t)}Tt=1 to be a non-negative non-decreasing sequence and
{γ(t)}Tt=1 to be a non-negative decreasing sequence such that
γ(t) ≤ 1,∀t ∈ {1, . . . , T}. Optimal coverage positions refer
to a centroidal Voronoi tesselation (CVT) of the estimated
field and optimal estimation positions as N points where
taking measurements will maximally reduce the uncertainty
associated with the estimate of the field. Let V (t)

i and e
(t)
i

be the Voronoi cell and the optimal estimation position of
Robot i at time t respectively. Here we omit the dependency
of c(t)i and V (t)

i on x(t) to simplify the notation.

A. Simultaneous Estimation and Coverage

Solving the coverage problem when the spatial field is
unknown requires estimating the density function while
distributing robots to monitor the environment with respect
to it. We propose the LEC and VEC algorithms to solve
this problem and to tackle the drawbacks of the Prediction-
Correction Coverage (PCC) algorithm proposed in [32]. In
particular, PCC divides the robots into two groups: one
robot is dedicated to solely sampling the points where the
uncertainty of the estimation is maximal, while the rest of the
robots optimize coverage of the estimated density function.
At each iteration, the robots take samples once a CVT of the
density estimate is achieved.

The PCC approach, therefore, presents two key drawbacks,
namely (a) one of the robots does not contribute to the
coverage task and (b) the estimation process is suboptimal
since the rest of the robots do not aim to reduce the
uncertainty of the field. In this paper, we address these
drawbacks by making each robot contribute to both learning
the field and covering it. We realize this goal by using a



suitable interpolation between the optimal coverage position
and optimal estimation position.

1) Lookahead Sampling: The multi-robot team starts with
a random initial configuration in the domain, x(0), initialized
hyperparameters ρ(0), τ (0), Gaussian process mean, µ(0), and
standard deviation, σ(0). At each iteration t, the multi-robot
team calculates the surrogate of the density function using
the update in [32],

φ(t)(q) = µ(t−1)(q)−
√
β(t)σt−1(q), ∀q ∈ D, (9)

which serves as an approximation of the true density func-
tion, φ, for the coverage task.

Based on the estimation, using a Lookahead type subrou-
tine [35], LEC finds the N points that would provide the
maximum reduction in the estimation uncertainty,

x(t)
e =

[
x

(t)
1,e

ᵀ
, . . . , x

(t)
N,e

ᵀ]ᵀ
.

Each Robot i is assigned one estimation position, e(t)
i , such

that e(t) =
[
e

(t)
1

ᵀ
, . . . , e

(t)
N

ᵀ]ᵀ
is a permutation of x

(t)
e that

minimizes the pairwise distance between each robot, xi, and
the assigned point, xi,e.

With respect to the coverage objective, recall that, for a
known density function, the optimal spatial allocation is a
CVT, which can be attained executing the control law in (3).
Analogously, in our algorithm, we optimize the coverage of
the surrogate at iteration t, φ(t), by letting each robot execute

ẋi = κ
(
c
(t)
i − xi

)
, κ > 0,

where c
(t)
i denotes the center of mass of the Voronoi cell

calculated with respect to the surrogate, φ(t).
We can make the robots concurrently learn the field

and cover it by balancing the estimation and the coverage
objectives. To this end, the control law

ẋi = κ
(

(1− γ(t))c
(t)
i + γ(t)e

(t)
i − xi

)
, κ > 0 (10)

makes each robot evolve towards the interpolated position
between c

(t)
i and e

(t)
i , obtaining a trade-off between learn-

ing and coverage. The purpose of the decreasing sequence
{γ(t)}Tt=1 is to increase the priority given to coverage with
increasing number of iterations. Consequently, we choose the
sequence such that γ(t) → 0 as t→∞.

The control law in (10) reaches an equilibrium point,
where the robots are located at

x
(t)
i = (1− γ)c

(t)
i + γe

(t)
i , i ∈ {1, . . . , N}, (11)

and take measurements y(t) according to (4). The hyperpa-
rameters ρ(t), τ (t) are updated using (6) and the Gaussian
process parameters µ(t), σ(t), needed to calculate the density
surrogate, are obtained from (7) and (8).

The pseudo code for LEC is given in Algorithm 1.

Algorithm 1: Lookahead Estimate Coverage (LEC)
Input: Number of robots N , parameter κ, Domain

D, sequences {β(t)}Tt=1 and {γ(t)}Tt=1

1 Initialization;
2 Random initial positions of robots

x(0) = [x
(0)
1

ᵀ
, . . . , x

(0)
N

ᵀ
]ᵀ

3 Calculate initial parameter values ρ(0) and τ (0)

4 Calculate initial mean µ(0)(·) and standard deviation
σ(0)(·)

5 for each iteration t ∈ {1, . . . , T} do
6 Calculate the estimate of φ for all x ∈ D as

φ(t)(x) = µ(t−1)(x)−
√
β(t)σ(t−1)(x)

7 Calculate optimal estimation positions
x

(t)
e = Lookahead

(
σ(t−1)

)
8 Robots choose estimation positions as

e(t) = argminx̄

∑N
i=1 ‖x̄i − x

(t−1)
i ‖ s.t. x̄i ∈

x
(t)
e and x̄i 6= x̄j ∀i, j ∈ {1, . . . , N}

9 while ∃i s.t. xi 6= (1− γ)c
(t)
i + γe

(t)
i do

10 Compute c(t)i as in (2)

ẋi = κ
(

(1− γ(t))c
(t)
i + γ(t)e

(t)
i − xi

)
11 end
12 for each robot i ∈ {1, . . . , N} do
13 Obtain the measurement
14 y

(t)
i = φ(x

(t)
i ) + ε

(t)
i

15 end
16 Update parameter values ρ(t) and τ (t)

17 Update µ(t)(·) and σ(t)(·)
18 end

2) Voronoi Sampling: In LEC, robots choose the optimal
estimation positions, e(t), in a centralized manner. Alter-
natively, in VEC, we take advantage of the decentralized
nature lent by the partition of the domain in regions of
dominance and we restrict the sampling space of each robot
to its Voronoi cell, Vi.

Analogously to LEC, in VEC the positions of the team
are initialized at random within the domain. The hyperpa-
rameters of the Gaussian processes and mean and variance
of the surrogate of φ are also initialized. At each iteration t,
the surrogate function φ(t) is calculated as in (9). The main
difference with LEC is that, in VEC, each Robot i chooses
the estimation position e

(t)
i as the point with maximum

uncertainty within its Voronoi cell, i.e.,

e
(t)
i = argmax

q∈V (t−1)
i

σ(t−1)(q). (12)

Executing the control law in (10) leads the multi-robot team
to the equilibrium point with the form of (11), where the
estimation objectives are given by (12). The samples taken by
the robots, y(t), are then used to update ρ(t), τ (t), µ(t), σ(t),
and, consequently, the estimation of the density function,
φ(t+1). The pseudo code for VEC is given in Algorithm 2.



Algorithm 2: Voronoi Estimate Coverage (VEC)
Input: Number of robots N , parameter κ, Domain

D, sequences {β(t)}Tt=1 and {γ(t)}Tt=1

1 Run lines 1-4 of Algorithm 1.
2 for each iteration t ∈ {1, . . . , T} do
3 Run line 6 of Algorithm 1.
4 for each robot i ∈ {1, . . . , N} do
5 Choose estimation position as

e
(t)
i = argmax

x∈V (t−1)
i

σ(t−1)(x)

6 end
7 Run lines 9-17 of Algorithm 1.
8 end

B. Theoretical Results

In this section we provide the theoretical analysis of the
performance of the proposed LEC and VEC algorithms. As
a metric, we use the additional cost, referred to as regret,
incurred by the robot team as a consequence of not knowing
the field. This can be defined as follows.

Definition 1. Let r(t) be the regret suffered by robots at
iteration t. Then r(t) can be defined as

r(t) = H(φ,x(t))−min
x
H (φ,x) . (13)

Let R(T ) denote the cumulative regret at iteration T . Then
we have R(T ) =

∑T
t=1 r

(t). We proceed to upper bound
the cumulative regret as follows. We start by stating the
additional assumption made in the analysis and a few useful
lemmas.

Assumptions. We make the following assumptions.
(A1). The parameters of the Gaussian process ρ and τ are
known.
(A2). The domain D is discrete.
(A3). The coverage algorithm given in (3) for CVT
obtains the solution of the optimization problem:
x = argminx̄H(φ, x̄) .

The same assumptions are made in [32] for the theoretical
results provided for PCC. We refer the readers to [32] for a
detailed description of implications of these assumptions.

Recall that all the additive measurement noises ε(t)i are
i.i.d. with N (0, σ2). Let I(φ;y(1:T )) be the mutual informa-
tion between φ and its measurements y(1:T ).

Lemma 1. The information gain for the sample points y(1:T )

satisfies

I
(
φ(x(1:T ));y(1:T )

)
≥ 1

2

T∑
t=1

log

(
1 +

(
maxq∈x(t) σ(t−1)(q)

)2
σ2

)
.

Proof. The proof directly follows from Lemma 5.3 in [27].

Lemma 2. (This is a restatement of Lemma 5.6 in [27]). Let
δ ∈ (0, 1) and β(t) = 2 log

(
|D|π(t)

δ

)
, where

∑
t≥1

1
π(t) =

1, π(t) > 0. Then ∀x ∈ D,

|φ(x)− µ(t−1)(x)| ≤
√
β(t)σ(t−1)(x)

holds with probability at least 1− δ.

Now we state the main theoretical result of this paper.

Theorem 1. Let d = maxq,q′∈D ‖q − q′‖2, A =∫
D
φ(q) dq, and η = 8d2D2

log(1+σ−2) . Choose {γ(t)}Tt=1 such

that
∑T
t=1

(
γ(t)
)2

= o(T ). Let δ ∈ (0, 1) and β(t) =

2 log
(
|D|π(t)

δ

)
, where

∑
t≥1

1
π(t) = 1, π(t) > 0. Let ξ(T ) =

maxZ∈D:|Z|=T I (φZ ; yZ) . Then with at least probability
1− δ, regret can be upper bounded as

R(T ) ≤
√
ηNTβ(T )ξ(T ) + o(T ).

Using γ(t) = 1/t regret can be upper bounded as

R(T ) ≤
√
ηNTβ(T )ξ(T ) + dA

π2

6
.

Proof. Here we consider that the high probability event given
in Lemma 2 holds. Let d = maxq,q′∈D ‖q − q′‖2 and A =∫
D
φ(q) dq. Recall that for each Robot i we have x

(t)
i =

(1− γ(t))c
(t)
i + γ(t)e

(t)
i . Using (1) we get

H
(
φ(t),x(t)

)
=

N∑
i=1

∫
V

(t)
i

‖q − x(t)
i ‖

2φ(t)(q) dq

≤
N∑
i=1

∫
V

(t)
i

(
‖q − c(t)i ‖

2 +
(
γ(t)
)2

‖c(t)i − e
(t)
i ‖

2

)
φ(t)(q) dq

= H
(
φ(t), c(t)

)
+
(
γ(t)
)2 N∑

i=1

∫
V

(t)
i

‖c(t)i −e
(t)
i ‖

2φ(t)(q) dq

≤ H
(
φ(t), c(t)

)
+ dA

(
γ(t)
)2

. (14)

Let H∗ = minxH(φ,x) and c∗ = argminxH(φ,x). From
assumption (A3) we have that H(φ(t), c∗) ≤ H∗ for all t.
Further we have that H(φ(t), c(t)) ≤ H(φ(t), c∗). Using (14)
we get

H(φ(t),x(t))− dA
(
γ(t)
)2

≤ H(φ(t), c∗) ≤ H∗. (15)

From Definition 1 and (15) we have

r(t) = H
(
φ,x(t)

)
−H∗

≤ H
(
φ,x(t)

)
−H(φ(t),x(t)) + dA

(
γ(t)
)2

≤ 2d|D|
√
β(t) max

q∈x(t)
σ(t−1)(q) + dA

(
γ(t)
)2

. (16)



(a) φ1. (b) φ2. (c) φ3.

Fig. 1. Density functions used for the simulations and experiments. φ1 and φ2, used for the simulations, are a sum of 9 Gaussian bivariate distributions
with equal variance and random means within the domain. Robotic experiments were carried out with φ3, a sum of 3 Gaussians with different variances.

TABLE I
NORMALIZED REGRET AND NORMALIZED SURROGATE ERROR AT T = 20 ITERATIONS

density, φ N
Benevento [32] Luo [25] LEC VEC
r(T ) ∆(t) r(T ) ∆(t) r(T ) ∆(t) r(T ) ∆(t)

Simulation 1
φ1

4 0.2847 0.3256 0.0705 0.3659 0.0374 0.2327 0.0326 0.2226
Simulation 2 7 0.0256 0.1999 0.0500 0.2702 0.0584 0.0753 0.0281 0.1622
Simulation 3

φ2
4 0.1517 0.3268 0.4116 0.6686 0.2264 0.3001 0.1000 0.2999

Simulation 4 7 0.0817 0.1483 0.0610 0.2983 0.0118 0.0651 0.0185 0.1254

Since {β(t)}Tt=1 is non-decreasing we have

4d2D2β(t)

(
max
q∈x(t)

σ(t−1)(q)

)2

≤ ηβ(T ) 1

2
log

(
1 +

(
maxq∈x(t) σ(t−1)(q)

)2
σ2

)
(17)

where η = 8d2D2

log(1+σ−2) . Further we have

I
(
φ(x(1:T )),y(1:T )

)
≤ N max

Z∈D:|Z|=T
I (φZ ; yZ) . (18)

Let ξ(T ) = maxZ∈D:|Z|=T I (φZ ;yZ) . Then from Lemma
1, (16), (17) and (18) we have

T∑
t=1

r(t) ≤
√
ηNTβ(T )ξ(T ) + dA

T∑
t=1

(
γ(t)
)2

. (19)

Choose {γ(t)}Tt=1 such that
∑T
t=1

(
γ(t)
)2

= o(T ). Then
from (19) we get

R(T ) ≤
√
ηNTβ(T )ξ(T ) + o(T ).

Substituting γ(t) = 1
t into (19) we get

R(T ) ≤
√
ηNTβ(T )ξ(T ) + dA

π2

6
.

This concludes the proof of Theorem 1.

Remark 1. Note that we can choose a sequence {β(t)}Tt=1

such that β(T ) = O(log T ). Further from [27] Theorem 8
we have that ξ(T ) scales sublinearly with many kernels. Thus
we see that our algorithms accumulates only a logarithmic
regret.

V. SIMULATIONS AND EXPERIMENTAL RESULTS
The proposed algorithms are implemented in simulation

as well as on a team of real robots. The first part of this
section includes simulations where the performance of both
algorithms is compared with other approaches from the liter-
ature. The second part includes experiments on a real robotic
platform that were conducted to verify the performance of
the algorithms and evaluate the potential differences between
the Lookahead and Voronoi sampling strategies.

A. Simulations
The LEC and VEC algorithms are implemented in simu-

lation to provide a comprehensive comparison against algo-
rithms that also tackle simultaneous estimation and coverage
of spatial fields. To this end, we focus on approaches
where the control law is based on the continuous version of
Lloyd’s algorithm in (3) executed with respect to a surrogate
function. With this criterion, the algorithms selected for the
comparison are the ones presented in [25] and [32], hereafter
referred to as Luo et al. and Benevento et al., respectively.

Each algorithm is simulated in the scenarios described in
Table I over T = 20 iterations. The simulations include
teams of four and seven robots and two different densities,
φ1 and φ2, defined in a 2m×2m domain. These density
functions are calculated as the sum of nine Gaussians with
identical variance with random means within the domain
boundaries and are depicted in Figs. 1a and 1b. For each
scenario in Table I, the initial position of the robot team is
drawn at random from a uniform distribution in the domain.
In the LEC and VEC algorithms, the decreasing sequence
that balances the execution of coverage and estimation is
defined as {γ(t)} = {1/t}Tt=1.

We use two different metrics to evaluate the performance
of the algorithms: the regret, r(t), defined in (13), and the



(a) Regret, r(t). (b) Density error, ∆(t)

Fig. 2. Evolution of (a) the regret and (b) the density error for Simulation 1. The initial peak at Iteration 1 in the regret is caused by a pure sampling
strategy in LEC and VEC, since the chosen decreasing sequence gives γ(1) = 1. While the initial regret is slightly bigger for LEC and VEC, after
10 iterations, they outperform Luo et al. and Benevento et al., achieving a final lower regret. The evolution of the regret can be further understood by
considering the density error, where it can be observed that the estimation of the density function becomes better for the case of the LEC and the VEC
algorithms as t = 10 iterations is surpassed. A better final estimation of the density function leads to a lower value of regret for the proposed algorithms.

error between the surrogate and the true density,

∆(t) =

∫
D

|φ(q)− φ(t)(q)| dq,

which measures the quality of the estimation.
The evolution of the regret for Simulation 1 is depicted in

Fig. 2a. We can observe how the proposed LEC and VEC
algorithms present an initial increase in the regret, due to the
initial prioritization of exploration (γ(1) = 1), which results
in the robots sampling around areas of high uncertainty. As
can be observed in the companion video, at the initial stages
of the algorithm, these points often correspond to boundary
points that lend poor coverage performance. However, once
the samples are enough to obtain a good estimation of the
density function, the regret of LEC and VEC becomes lower
than the other two algorithms. This is consistent with the
values of final regret observed in the other simulations in
Table I, where the LEC and VEC algorithms generally show
a lower value of regret. For the cases where the regret is
not strictly lower, its value is comparable to the lower value
between Luo et al. and Benevento et al.

The evolution of the density error for Simulation 1 is
shown in Fig. 2b where, after an initial increase in the error,
the estimation decreases for all the algorithms. However,
the benefits of the LEC and the VEC are highlighed by
this metric, where the differences between the quality of
field estimation become more prominent for the proposed
approaches, which yield better surrogate functions. This is
consistent with the final values for the density error in Table
I, where the proposed algorithms outperform the other two
algorithms in all four scenarios.

Given the satisfactory results observed in these simulations
under ideal assumptions such as single integrator dynamics,
without delays or actuator limits, in next section we limit
the experimental implementation on real robots to only the
proposed algorithms, LEC and VEC.

B. Robotic Experiments

The LEC and VEC algorithms were implemented on
a team of four mobile robots on the Robotarium [36],
a remotely accessible swarm robotics testbed where ex-
periments can be uploaded via web. The robots have a
differential-drive kinematic configuration and, thus, their
movement can be described using unicycle dynamics, i.e.,
ẋi = [vi cos θi, vi sin θi]

ᵀ, θ̇i = ωi, where (vi, ωi) denote
the linear and angular velocity of robot i and θi, its heading.
At each control iteration, the control script receives the poses
of the robots, does the calculations, and outputs the desired
linear and angular velocity for all the robots. Given that
Algorithms 1 and 2 consider single integrator dynamics, we
transformed the control laws into unicycle dynamics using a
diffeomorphism analogous to the one in [37].

In the experiment, four robots were tasked with learning
and covering the density φ3 (Fig. 1c). As can be observed
in the snapshots in Fig. 3, both in the case of LEC and
VEC the surrogate function learned by the robots matches
closely the actual density function, φ3. This is supported
by the density error plot in Fig. 4, where we can observe
how the surrogate error in both algorithms converges to a
very similar value. Despite the similarity between the learned
surrogate functions, however, the final spatial allocations of
the multi-robot team in Fig. 3 differ slightly due to the
different trajectories adopted by the multi-robot team during
the execution of the environment, which led the team to
converge to two different, albeit close, local minima.

The regret of both LEC and VEC algorithms in the
different iterations is also shown in Fig. 4. Analogously to
what we observed in the simulations in Fig. 2, the balancing
factor between the learning and the coverage objectives
causes an initial increase in the regret, which corresponds
to the maxima observed at Iteration 1. However, after this
first exploration step, the regret rapidly decreases for both
methods as the robots improve the estimation of the density.
After approximately 10 iterations, the robots have a fairly
good estimation of the density function and focus mainly



(a) Lookahead Estimate Coverage (LEC) Algorithm. (b) Voronoi Estimate Coverage (VEC) Algorithm.

Fig. 3. Final spatial configurations of the experiments run on a team of four robots learning and covering density φ3, as shown in Fig. 1c. The learned
surrogate function is represented by a heat map, with higher values of the density being depicted in yellow and lower values in deep green. Within the
domain, the straight lines represent the boundaries of the Voronoi cells corresponding to the regions of dominance of the different robots. The red × show
the points where the robots have taken a sample in the domain according to lines 8 and 5 in Algorithms 1 and 2, respectively.

(a) Regret, r(t). (b) Density error, ∆(t).

Fig. 4. Evolution of (a) the regret and (b) the density error for the robotic experiment, where a team of four robots is tasked with exploring and covering
φ3. Similarly to what was observed in the simulations, the regret presents an initial increase in the first iteration of the LEC and VEC algorithms due to
a pure learning strategy. After this increase, the regret rapidly decreases for both algorithms, stabilizing approximately after 10 iterations. The evolution
of the error between the surrogate and the true density function presents similar results for the LEC and the VEC algorithms, suggesting that limiting the
sampling space in the case of the second algorithm does not affect significantly the learning of the density function.

on the coverage task, given that the sequence {γ(t)} goes
to almost zero at T = 20. In the snapshot of the final
configuration of the experiments in Fig. 3, we can see how
these iterations correspond to the sampling points (marked
as red ×) that are close to the final positions of the robots.

VI. CONCLUSIONS

In this paper, we introduced two algorithms for a team of
robots to simultaneously learn and cover an initially unknown
density function. The crux of the approach lies in executing
a standard optimal coverage control law with respect to a
surrogate function of the true density function, which is
iteratively refined as the robots explore and collect samples
over the domain. The novelty of this approach is based on
the sampling (exploration) strategies associated with the two
algorithms, which determine which points to visit based on
their associated uncertainty. The algorithms differ on the
sampling space available to each robot and the assignment

of the desired sampling points to the individual robots in
the team. Theoretical guarantees were presented in terms of
regret for the algorithms. Their performance was compared
to other methods in simulation, showing improvement both
in terms of regret and density function estimation, with
the proposed algorithms rendering a close estimation of the
true density function. Further, limiting each robot’s sampling
space in the case of the Voronoi estimation did not show a
significant performance drop with respect to the centralized
sampling based on lookahead methods, which is a promising
in the context of decentralization of the algorithm. Both
algorithms were evaluated on a team of real robots with
satisfactory results, showing that delays and actuator limits
did not affect the performance of the algorithms.
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